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The flow in an infinite slab of rectangular cross-section is investigated numerically
by a finite volume method. Two facing walls which move parallel to each other with
the same velocity, but in opposite directions, drive a plane flow in the cross-section
of the slab. A linear stability analysis shows that the two-dimensional flow becomes
unstable to different modes, depending on the cross-sectional aspect ratio, when the
Reynolds number is increased. The critical mode is found to be stationary for all
aspect ratios. When the separation of the moving walls is larger than approximately
twice the height of the cavity, the basic flow forms two vortices, each close to one
of the moving walls. The instability of this flow is of centrifugal type and similar to
that in the classical lid-driven cavity problem with a single moving wall. When the
moving walls are sufficiently close to each other (aspect ratio less than 2) the two
vortices merge and form an elliptically strained vortex. Owing to the dipolar strain
this flow becomes unstable through the elliptic instability. When both moving walls
are very close, the finite-length plane-Couette flow becomes unstable by a similar
elliptic mechanism near both turning zones. The critical mode produces wide streaks
reaching far into the cavity. For a small range of aspect ratios near unity the flow
consists of a single vortex. Here, the strain field is dominated by a four-fold symmetry.
As a result the instability process is analogous to the instability of a Rankine vortex
in an quadripolar strain field, resulting from vortex stretching into the four corners
of the cavity.

1. Introduction
The flow of an incompressible Newtonian fluid in simple bounded domains is

of fundamental interest, because the dynamical problem is free from unnecessary
geometrical complications. Yet, essential wall effects are included. Such systems can
thus provide insight into the basic mechanisms that are operative in more specific
flow problems arising in technical applications.

Here we consider a class of vortex flows in rectangular containers of infinite span.
The motion is driven by two facing sidewalls of the container which slide with constant
and equal speed, but in opposite directions. By variation of the cross-sectional aspect
ratio this system can model a variety of situations ranging from the interaction of two
co-rotating wall-bounded vortices to finite-length plane-Couette flow. The system is
an extension of the classical lid-driven cavity problem (see e.g. Shankar & Deshpande
2000 and Albensoeder, Kuhlmann & Rath 2001a, b) and may serve as a model for
certain coating flows (Benjamin, Anderson & Scriven 1995).

The Stokes flow in a rectangular two-sided lid-driven cavity with free-surface
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sidewalls has been investigated by Gaskell et al. (1996, 1998) who used a finite-
element and a biharmonic series-expansion method, respectively. Their concern was
the topology of the creeping flow. The same problem, but with rigid sidewalls has
been considered by Kelmanson & Lonsdale (1996) using an integral-equation method.
Likewise, these authors were interested in the eddy genesis in creeping flow. These
investigations did not include the effects of inertia, even though inertia plays a crucial
role in the existence of multiple solutions in the two-sided lid-driven cavity. Such
multiple two-dimensional steady flow states were found by Kuhlmann, Wanschura &
Rath (1997) and they have been explored more systematically by Albensoeder et al.
(2000a). The latter authors discovered up to seven different flow states in the cavity
depending on the aspect ratio and the two side-wall Reynolds numbers.

To date, all three-dimensional stability analyses of lid-driven cavity flows have
focused mainly on the classical one-sided lid-driven cavity in which a single lid
drives the flow. Numerical attempts to calculate the linear stability boundaries of
the steady two-dimensional basic flow are due to Ramanan & Homsy (1994) and
Ding & Kawahara (1998, 1999). But the problem was not solved until the work
of Albensoeder et al. (2001b), who provided accurate linear-stability boundaries, i.e.
critical Reynolds numbers, for a wide range of aspect ratios and who showed that
four different instabilities may occur which are all due to centrifugal effects.

One of the first investigations of the nonlinear flow in cavities with two moving
walls is due to Kuhlmann et al. (1997) who carried out experiments in a cavity in
which the separation of the moving walls was about twice the distance between the
stationary walls (aspect ratio Γ = 1.96). They found a supercritical instability to
a three-dimensional flow consisting of rectangular steady cells. By a linear stability
analysis for a limited range of aspect ratios it was shown that the instability for
anti-parallel wall motion is due to the strain in the centre of the vortex. These
results have been extended by Blohm & Kuhlmann (2002) who carefully measured
the steady and time-dependent bifurcations which occur at higher Reynolds numbers.
The case of parallel wall motion has been investigated numerically by Albensoeder &
Kuhlmann (2002). For a two-sided lid-driven cavity with differentially heated moving
walls Alleborn, Raszillier & Durst (1999) calculated the basic flow, including the
heat and mass transfer, and its linear stability with respect to the limited class of
two-dimensional perturbations. Moreover, the system’s relevance to industrial drying
processes was pointed out.

The instability in the two-sided lid-driven cavity found by Kuhlmann et al. (1997)
resembles the instability of elliptic vortices in unbounded flows. The authors pointed
out the similarity of the nonlinear steady cellular flow observed in the cavity with
the structure of the early transient flow of an elliptic vortex (flattened Taylor–Green
vortex) decaying to turbulence which has been calculated numerically by Lundgren &
Mansour (1996). In particular, the vorticity was found to be distorted into sheet-like
structures in both cases. Sipp & Jacquin (1998) employed both short-wave asymptotics
and classical linear stability theory to calculate the instability of flattened Taylor–
Green vortices. They found that the streamlines in the centre of the elliptical vortex
are the most unstable ones, which is consistent with the peak of the energy transfer to
the perturbation in the unstable cavity flow considered by Kuhlmann et al. (1997), and
that the structure of the most unstable perturbation is identical to that of the critical
mode in homogeneous elliptic flow (Waleffe 1990). Moreover, the nonlinear temporal
development calculated by Sipp & Jacquin (1998) is analogous to the simulation
result of Lundgren & Mansour (1996).

In the limit of a small distance between the two moving walls the two-dimensional
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flow in the central region of the cavity approaches plane-Couette flow. The transition
to turbulence in this classical problem is still under investigation today; see e.g.
Manneville & Dauchot (2001). In experimental realizations, finite-length systems
must be employed and the inevitable end conditions are usually not very well defined.
Typically, the gap widens into a larger volume of fluid as in the apparatus used
by Taylor (1934) for the stretching of droplets suspended in a carrier fluid. Modern
experiments (Tillmark & Alfredsson 1992) use a similar setup with open ends. In
such experiments, the measurement time is severely limited by the propagation of
disturbances from the open ends into the bulk, eventually leading to a premature
transition to turbulence. End effects in finite-length systems must therefore always be
taken into account.

The present paper is a systematic extension of the work of Kuhlmann et al. (1997).
We shall investigate the linear stability of the basic two-dimensional flow in two-sided
lid-driven cavities, paying particular attention to the influence of the cross-sectional
aspect ratio. The methods of investigation are introduced in § 2, in which the problem
is defined, the numerical procedures described, and the numerical code is validated.
An overview on the critical conditions in § 3 is followed by a detailed explanation of
each type of instability that can arise. The energy-transfer mechanisms are elucidated
and the structures of the different neutral modes are discussed. A conclusion in § 4
summarizes our results.

2. Methods of investigation
2.1. Problem formulation

We consider the incompressible flow of a Newtonian fluid in a rectangular volume
of height h and width d in the (x, y)-plane. The geometry is sketched in figure 1.
The domain is assumed to be infinitely extended in the third (z) direction. The fluid
motion is driven by two opposing sidewalls at x = ±d/2 which move with the same
constant speed V , but in opposite directions. Length, velocity, time, and pressure are
scaled using h, ν/h, h2/ν, and ρν2/h2, where ν is the kinematic viscosity and ρ the
density of the fluid. In this scaling, the Navier–Stokes and continuity equations are
given by

∂u

∂t
+ u · ∇u = −∇p+ ∇2u, (2.1)

∇ · u = 0. (2.2)

The no-slip, no-penetration boundary conditions for u read

u(y = ±1/2) = 0 and u(x = ±Γ/2) = ∓Re ey, (2.3)

where the two governing parameters are the Reynolds number Re and the aspect
ratio Γ :

Re =
Vh

ν
and Γ =

d

h
. (2.4)

Note that the y-direction is always defined parallel to the moving walls (also in the
limit Γ → 0).

2.2. Basic flows

For small Reynolds numbers the flow will reflect the translational invariances in z and
t of the governing equations and be two-dimensional and steady. As the Reynolds
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Figure 1. Cross-section of the slab in the (x, y)-plane.

number increases and inertia terms become increasingly important, multiple two-
dimensional solutions may appear. Albensoeder et al. (2001a) found multiple (up
to seven) two-dimensional solutions, some of which break the discrete rotational
symmetry by an angle of π about the z-axis. The existence of multiple two-dimensional
states is an important feature, because all of these states must be considered separately
when a complete stability analysis is to be performed. It will turn out, however, that
this complication arises only in a small range of aspect ratios. Therefore, we shall
indicate all basic steady solutions (u0(x, y), p0(x, y)) of (2.1), (2.2) by a subscript 0. It
will be mentioned explicitly when this state is not unique.

2.3. Stability analysis

The linear stability of any of the two-dimensional steady basic flows is governed by

∂u

∂t
+ u0 · ∇u+ u · ∇u0 = −∇p+ ∇2u, (2.5)

∇ · u = 0, (2.6)

where u and p denote the deviation from the particular basic state (u0, p0) under
consideration. The perturbation flow is subject to no-slip and no-penetration boundary
conditions on all walls, u(x = ±1/2) = u(y = ±Γ/2) = 0. Owing to the infinite
extension in the z-direction the perturbation modes can be written as normal modes(

u
p

)
(x, y, z, t) =

(
U
P

)
(x, y) exp{σt+ i(ωt− kz)}+ c.c., (2.7)

where σ, ω, k ∈ R. The critical Reynolds number Rec is determined by the condition
that the maximum possible growth rate vanishes. Hence the growth rate σ must be
maximized over all discrete modes (numbered by q) and all continuous wavenumbers
k, i.e. maxk,q σ(k, q, Rec, Γ ) = 0. Modes for which only σ(Ren, Γ ) = 0, are called neutral
modes with the neutral Reynolds number Ren. The growth rates σ are determined
by a large generalized eigenvalue problem which results from (2.5), (2.6) after an
appropriate discretization. The eigenvectors represent the corresponding discretized
flow and pressure fields (U , P ).
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2.4. Energy analysis

For a discussion of the instability mechanisms, an a posteriori evaluation of the
energy budget of the critical modes has proven very useful (Kuhlmann et al. 1997;
Albensoeder et al. 2001b). The rate of change of the kinetic energy Ekin can be written
as

1

D∗
dEkin

dt
= −1 +

4∑
i=1

∫
V

Ii dV = −1 +

4∑
i=1

∫
V

I ′i dV , (2.8)

where D∗ is the total dissipation in the volume

D∗ =

∫
V

(∇× u)2 dV , (2.9)

and the integrals are taken over the volume V occupied by the fluid. The energy
production rates can be decomposed in different ways. Depending on the particular
instability either the usual decomposition into Cartesian coordinates, describing the
momentum transport in the Cartesian directions, or a decomposition into longitudi-
nal and transversal contributions, describing the momentum transport parallel and
perpendicular to the local basic-flow direction, can be used. Accordingly, we introduce
the Cartesian decomposition of the local production rate −u · (u · ∇u0) normalized by
the dissipation D∗ as

4∑
i=1

Ii = − 1

D∗

(
uu
∂u0

∂x
+ uv

∂u0

∂y
+ vu

∂v0

∂x
+ vv

∂v0

∂y

)
, (2.10)

where i numbers all terms on the right-hand side consecutively, and the longi-
tudinal/transversal decomposition (Albensoeder et al. 2001b)

4∑
i=1

I ′i = − 1

D∗
[u⊥ · (u⊥ · ∇u0) + u‖ · (u⊥ · ∇u0) + u⊥ · (u‖ · ∇u0) + u‖ · (u‖ · ∇u0)], (2.11)

where

u‖ =
(u · u0)u0

u0
2

and u⊥ = u− u‖. (2.12)

Of course, the total local production is the same in both cases,
∑4

i=1 Ii =
∑4

i=1 I
′
i .

The well-established temporal linear-stability method yields global critical modes.
Using the Reynolds–Orr equation it is possible to quantify and to localize the energy
transfer and the dissipation of the critical mode. A discussion of the instability in
terms of notions such as centrifugal or elliptic instabilities is made difficult for the
following reasons:

(a) the instability characteristics may change continuously upon variation of the
governing parameters such as the aspect ratio;

(b) no rigorous criteria exist for a classification of the instabilities of general viscous
flows in terms of centrifugal instabilities, etc.; and

(c) the notions centrifugal, elliptic or quadripolar instabilities have been introduced
for simple idealized flows and cannot straightforwardly be applied to instabilities of
more general flows.

The short-wavelength instability analysis using the geometric-optics method in-
troduced by Lifshitz & Hameiri (1991) may provide a more precise classification,
because the instability can be traced back to the property of the basic flow in the
vicinity of a single streamline. However, the short-wavelength analysis is restricted
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to asymptotically small perturbation wavelengths (k → ∞). It has been shown by
Bayly (1988) and Sipp, Lauga & Jacquin (1999) that it is possible to construct normal
modes localized around the streamline ψ∗0 , for which the amplification rate along the
streamline σ(ψ0) has a local maximum, in the form of an infinite series using the
result of the short-wavelength analysis. To improve the convergence of this series for
finite wavenumbers k, however, one must resort to higher-order asymptotics (Bayly,
Orszag & Herbert 1988). If, therefore, the calculation of the critical mode with finite
k is required the classical normal-mode analysis is usually preferable.

In this work we employ a normal-mode analysis and use the Reynolds–Orr equation
to clarify the characteristics of the energy-transfer process. The discussion of the
instability mechanism will be based on qualitative and quantitative comparisons
of the features of the basic flow, the normal mode, and the energy transfer with
instabilities arising in highly idealized systems such as the linear elliptic flow (Waleffe
1990).

2.5. Numerical methods and code validation

The numerical methods are identical to those of Albensoeder et al. (2001a, b). As the
starting point for any stability analysis the steady basic solution (u0, p0) is calculated
by a finite-volume-discretization method using primitive variables on a staggered grid.
Surface integrals and intermediate values are calculated by the midpoint rule and
linear interpolation (Ferziger & Perić 1996). In this formulation pressure boundary
conditions are not required. To resolve the gradients in the near-wall regions the
grid is slightly stretched near the boundaries by a stretching factor of 0.95 between
neighbouring cells. While accuracy is second order for equidistant grids, it is formally
lowered to first order by the grid stretching. For weak stretching, however, as in
the present case, the code is nearly second-order accurate (Ferziger & Perić 1996).
The resulting discretized nonlinear set of equations is solved by Newton–Raphson
iteration.

To solve the linear stability problem (2.5), (2.6) the four unknowns (u, v, w, p) are
discretized on the same grid as for the basic state, and the same finite-volume method
is used. Inserting the discretized normal modes into the linear-stability equations
leads to a large generalized eigenvalue problem which is solved by inverse iteration.
All resulting linear systems of equations for the Newton–Raphson iteration and
the eigenvector iteration are solved using LAPACK subroutines. All data presented
were calculated on 141 × 141 grid points 35 of which being stretched towards each
boundary.

A validation of the basic-flow calculations has been provided by Albensoeder et al.
(2001a) by comparison with benchmark solutions for the classical square cavity driven
by a single moving lid (Ghia, Ghia & Shin 1982; Botella & Peyret 1998). Moreover, in
Albensoeder et al. (2001a) we compared the existence ranges of multiple solutions with
the results of Kuhlmann et al. (1997) for the two-sided lid-driven cavity (see figure 2).
An extensive validation of the linear stability analysis was done by Albensoeder et
al. (2001b) by comparing neutral and critical stability boundaries for the classical
single-lid-driven cavity with numerical (Ramanan & Homsy 1994; Ding & Kawahara
1999) and experimental (Albensoeder et al. 2001b) results. To give further weight to
the present numerical code, the critical data are compared in figure 2 with those of
Kuhlmann et al. (1997). For example, the minimum of the stability boundary shown
in figure 2 occurs at Γ = 1.428, Rec = 189.8, and kc = 2.406. These data must
be compared with those of Kuhlmann et al. (1997) who obtained Γ = 1.45 ± 0.05,
Rec = 190.4, and kc = 2.4±0.05. Albensoeder et al. (2001b) showed that the calculated
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Figure 2. Comparison of the present results (lines) with those obtained by Kuhlmann et al. (1997)
(symbols). Critical Reynolds number Rec: full line and �; critical wavenumber kc: dotted line ande. The dashed line and + indicate the existence range of multiple solutions.
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Figure 3. Dependence of the neutral Reynolds number Ren on the grid resolution; here Ren = Rec.
Symbols indicate different aspect ratios. (a) e, Γ = 0.60 (E1); �, Γ = 1.15 (E2); �, Γ = 2.00 (E2);
and 4, Γ = 2.00 (C). (b) e, Γ = 0.19 (E1); �, Γ = 0.775 (E1); �, Γ = 0.85 (Q); and 4, Γ = 1.04
(E2). N is the square root of the total number of grid points. The notations E1, E2, Q, and C
indicate different instability branches. They are introduced in § 3.

critical Reynolds numbers deviate less than 3% from the true critical values. This
conservative estimate also holds for the present calculations, the error being much
less in most cases. Examples of the grid dependence of the critical parameters for
the present problem are given in figure 3(a, b). Similar convergence rates apply to all
critical data reported in the following.

3. Results
The main results are summarized in figure 4 which shows the linear stability

boundaries and the critical wavenumbers. All data presented have been obtained for
141 × 141 grid points.† The most unstable mode is always stationary, independent

† Vector and contour plots have been interpolated to smaller grid sizes.
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Figure 4. Critical Reynolds numbers Rec (envelope of the full lines) and wavenumbers kc (dotted
lines) as functions of the aspect ratio Γ . Different segments of the critical curve between the
intersection points of the neutral curves are denoted by capital letters on top of the figure. The
dashed line indicates the existence range of multiple (three) two-dimensional solutions. Experimental
critical data for Rec (�) for kc (�) have been taken from Blohm et al. (2001).

of the aspect ratio. The critical curve is made up of sections of different neutral
curves.

For small aspect ratios the basic flow becomes unstable via an instability denoted
by E1. For the present definition of Re according to (2.4) the critical Reynolds
number takes a minimum value of Rec = 226.4 ± 0.2 at Γ = 0.475 ± 0.001 with
kc = 4.2104± 0.0004. As a measure for the numerical uncertainty we have taken the
difference between the values of a variable obtained on the present fine grid (141×141)
and on a grid with half the number of grid points in each direction (71 × 71). The
neutral branch E1 increases strongly for Γ ↑ (≈ 1). Beyond a maximum (not shown
in figure 4) the neutral Reynolds number decreases steeply near Γ ≈ 1 and forms the
section of the critical curve labelled E2. The character of the instabilities E1 and E2
is very similar as they develop continuously along the neutral curve connecting both
segments of the critical curve.

Near Γ = 1, where the neutral curve connecting the segments E1 and E2 reaches a
rather large maximum, another instability, denoted by Q, arises. The corresponding
neutral curve intersects with E1 and E2 at (Γ , Re) = (0.775± 0.002, 623.4± 3.5) and
(Γ , Re) = (1.036± 0.001, 680.4± 2.4), respectively.

For larger aspect ratios, Γ & 2, three different steady basic flows exist within the
range outlined by the dashed curves in figures 4 and 5. Two of these basic states are
linearly stable with respect to two-dimensional perturbations, while a third state is
unstable in two dimensions. The multiplicity of flow states is associated with a fold
of the solution manifold (Kuhlmann et al. 1997; Albensoeder et al. 2001a). Adopting
the notation of Albensoeder et al. (2001a) for the two relevant basic states, the
strongly merged vortex state, corresponding to an elliptical vortex flow (an example is
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Figure 5. (a) Neutral Reynolds numbers (full lines) and existence range of triple basic-state
solutions (delineated by the dashed curves) for a range of aspect ratios near Γ = 2. (b) Close-up of
the region marked by the dotted box in (a).

shown in figure 9), exists to the left (smaller Γ ) of the rightmost dashed line, while
the two-vortex state which consists of two well-separated vortices exists to the right
(higher Γ ) of the leftmost dashed line (approximately Γ ≈ 2, see Kuhlmann et al.
1997). Since the three-dimensional linear-stability boundaries continue into the range
of two-dimensional non-uniqueness, the critical curves extend to the border of the
existence range where the respective base flow ceases to exist.

For very large aspect ratios the basic state is the two-vortex flow. Its stability
curve, labelled C in figure 4, terminates at (Γa, Rea) = (1.951± 0.010, 283.5± 7.0) on
the existence boundary of the two-vortex flow (point a in figure 5). Conversely, the
neutral stability boundary E2 terminates on the rightmost dashed line marking the
largest aspect ratio for which the strongly merged vortex flow exists. Before reaching
the termination point, however, the neutral curve E2 intersects with another neutral
branch E3 at the point (Γb, Reb) = (2.198±0.003, 308.3±4.1) (point b in figure 5). The
neutral curve E3 is a critical curve for the strongly merged vortex flow only in a small
range of the aspect ratio. In a small wedge-shaped region (see figure 5b) the Reynolds
numbers within which the merged flow state is linearly stable is bounded from above
by E2 and from below by E3. The lower critical curve E3 finally terminates at
(Γc, Rec) = (2.066± 0.004, 266.3± 3.0) (point c in figure 5) on the existence boundary
of the strongly merged vortex flow.

Owing to the path of the various neutral curves, there remains only a small range
of parameters within which both the strongly merged state and the two-vortex state
can be observed, i.e. where both are linearly stable (cf. Kuhlmann et al. 1997). The
instability branch C for Γ > 1.951 persists for Γ →∞. Some numerical values of the
critical parameters are given in table 1.

Neutral curves Ren(k) for a number of aspect ratios are shown in figure 6. For
small aspect ratios (full line) the bandwidth in k-space of the instability E1 is wide. As
the aspect ratio increases, the critical Reynolds number increases and the bandwidth
narrows considerably (long dashed line). The bandwidth of the instability Q (dash-
dotted lines) is relatively wide and the neutral modes have a much larger wavenumber.
Neutral curves for the instability E2 are not shown, because they have already been
given by Kuhlmann et al. (1997). Growth rates σ of the unstable modes as a function
of (Re − Rec)/Rec are plotted in figure 7(a, b) for several aspect ratios. Figure 7(a)
shows that the supercritical growth rates of the modes E1 and Q are typically higher
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Γ Rec kc Type

0.30 326.3± 0.4 5.385± 0.004 E1
0.50 227.9± 0.3 4.114± 0.001 E1
1.00 669.3± 1.3 14.58± 0.040 Q
1.50 191.9± 1.0 2.353± 0.001 E2
2.00 263.3± 2.2 2.247± 0.001 E2
2.17 299.3± 2.8 2.024± 0.004 E3
2.00 252.2± 6.6 1.693± 0.011 C
2.50 334.3± 5.1 1.685± 0.012 C

Table 1. Critical data for selected aspect ratios. The specified uncertainty is the relative difference
between the values obtained on the fine grid (141× 141) and those on a grid with half the number
of grid points in each direction (71× 71).
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Figure 6. Neutral curves Ren(k) as functions of k for several aspect ratios Γ . Line styles indicate the
aspect ratio. Solid: Γ = 0.25 (E1), dotted: Γ = 0.50 (E1), long-dashed: Γ = 0.70 (E1), dash-dotted:
Γ = 0.90 (Q), dash-dot-dotted: Γ = 1.00 (Q), dash-dash-dotted: Γ = 2.50 (C) and short-dashed:
Γ = 3.50 (C).

than those of the modes E2 and C, the growth rates of the last two modes being
of the same order of magnitude. In figure 7(b) growth rates are given for the aspect
ratios Γ = 0.775 and Γ = 1.036 corresponding to the two codimension-2 points at
which the neutral curves E1 and Q, and Q and E2, respectively, intersect. Owing to the
large slope of the neutral curves E1 and E2 the modes C exhibit higher supercritical
growth rates than the modes E1 and E2.

3.1. Elliptic instability for 1.036 < Γ < 2.198 (E2)

Along the neutral curve E2, in the aspect-ratio range 1.036 < Γ < 2.198, the instability
is caused by the elliptic instability mechanism. Except for aspect ratios near Γ = 2 it
is the first instability.

The elliptic instability is essentially the same as the process by which a vortex
filament becomes unstable when it is subject to an external plane strain (Moore
& Saffmann 1975; Tsai & Widnall 1976) and by which vortex rings lose their
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Figure 8. Neutral velocity field over one period in the z-direction for Γ = 1.5 in a cut at y = 0.
Lengths are given to scale. The parameters are Rec = 191.9 and kc = 2.353.

stability owing to the self-induced strain (Widnall & Tsai 1977). For unbounded
inviscid elliptical flow Pierrehumbert (1986) has shown numerically that the instability
occurs on arbitrary small scales, and Bayly (1986) exactly solved the nonlinear
equations to obtain the unstable modes in the form of plane waves whose wave
vector rotates elliptically around the axis of the basic flow (see also Waleffe 1990).
Recently, Kuhlmann et al. (1997) and Kuhlmann, Wanschura & Rath (1998) found
that the elliptic instability mechanism is also operative in the two-sided lid-driven
cavity where it leads to nonlinear three-dimensional flows with saturated amplitude.
The present linear stability boundaries confirm these earlier results (cf. figure 2).

At the threshold, a stationary three-dimensional flow bifurcates supercritically (at
least for Γ = 1.96, Kuhlmann et al. 1997) from the basic flow. The supercritical flow
appears in the form of rectangular cells such that the spanwise velocity component w
vanishes periodically on equally spaced planes separated by ∆z = λc/2. The cellular
character is visible from one period of the critical velocity field shown at y = 0 in
figure 8. The wavenumber kc = 2π/λc at onset is given in figure 4. Note that the basic
flow as well as the critical mode are point symmetric with respect to the centre of
each cell at which u = u0 = 0. Remarkably, the nonlinear three-dimensional flow also
preserves this symmetry (Blohm & Kuhlmann 2002).
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Aspect ratio Γ = 0.20 Γ = 0.90 Γ = 1.50 Γ = 2.17 Γ = 2.50
Reynolds number Rec = 577.8 Rec = 642.7 Rec = 191.9 Rec = 299.3 Rec = 334.3

Type E1 Q E2 E3 C

Production term
∫
Ii dV

∫
I ′i dV

∫
Ii dV

∫
I ′i dV

∫
Ii dV

∫
I ′i dV

∫
Ii dV

∫
I ′i dV

∫
Ii dV

∫
I ′i dV

i = 1 0.013 0.098 0.122 0.261 −0.454 0.033 −0.142 0.213 0.492 −0.043
2 −0.059 0.750 0.531 0.460 1.404 0.885 1.160 0.584 −0.409 0.714
3 0.982 0.004 −0.047 0.121 −0.190 −0.039 −0.144 −0.017 0.757 0.121
4 0.066 0.150 0.400 0.163 0.242 0.123 0.128 0.223 0.166 0.214

Table 2. Normalized energy production terms for several aspect ratios.
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Figure 9. Basic-state streamlines (full lines) for Γ = 1.5 at criticality (Re = Rec = 191.9) together
with the local production I2 (colour) and the critical velocity field (arrows) in the plane in which
w = 0. In this plane I2 takes its maximum value.
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Figure 10. (a) Vorticity of the neutral mode (arrows) in a plane z = const. through the centre of
a convection cell. The contour lines are streamlines of the basic flow and the grey bars indicate
the direction of the principal axis of strain of the basic flow. (b) Isolines of the z-component of
the perturbation vorticity on the cell boundaries (where w = 0) shown together with the principal
strain direction of the basic flow in the centre of the figure. The parameters for both (a) and (b)
are Γ = 1.5, Re = Rec = 191.9.
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Figure 11. Basic-state streamlines (full lines) for Γ = 2.17 at criticality for the branch E3
(Re = Rec = 299.3) together with the local production I2 (colour) and the critical velocity field
(arrows) in the plane in which w = 0. I2 takes its maximum value in this plane.
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As a representative example, the elliptic base flow, the neutral velocity field, and the
local energy transfer rate I2 (cf. table 2) are shown in figure 9 on the cell boundary,
i.e. in a plane in which w = 0. The aspect ratio Γ = 1.5 is near the minimum of the
instability branch which occurs at ΓE2,min = 1.428± 0.001, ReE2,min = 189.8± 1.1, and
kE2,min = 2.406± 0.001.

Not only the elliptical shape of the streamlines of the basic flow and an energy
transfer rate

∑
i Ii which takes a maximum in the centre of the vortex indicate that

the instability is of elliptic type. This conclusion is also supported by the structure
of the critical mode in planes of constant z through the centre of the cells (offset by
∆z = λc/4 from the cell boundary shown in figure 9). In these planes (an example
is shown in figure 10a) the vorticity vector in the centre of each convection cell is
coplanar to the (x, y)-plane and it is directed parallel or (alternatingly) anti-parallel to
the principal strain axis. Such a behaviour is typical for the critical mode of the elliptic
instability (Waleffe 1990). Another indicator of the elliptic instability is provided by
the perturbation vorticity on the cell boundary (figure 10b). The z-component of the
perturbation vorticity takes extrema which are located approximately on the main
strain axis through centre of the basic-state vortex.

For large aspect ratios the topology of the basic flow changes smoothly along the
linear stability curve. When the distance between the moving walls becomes larger,
the strain in the centre of the cavity will eventually dominate the local rate of rotation
and the elliptic stagnation point transforms into a hyperbolic stagnation point. On
the critical curve, this happens at Γ = 1.58±0.01, Re = 197.8±2.1, k = 2.307±0.006.
The smooth behaviour of the critical curve in this point and the continuous variation
of the local energy-production rates indicate that the instability mechanism does not
change. In fact, as was first shown by Kuhlmann et al. (1997) for Γ = 1.96, the
region of maximum amplification remains in the centre of the cavity for this branch
of instability and it is peaked at the hyperbolic stagnation point, even though two
small recirculation regions exist in the basic flow, both being embedded in a globally
circulating stream.

For even larger aspect ratios the critical curve E2 intersects with another critical
curve E3 which is bounding the range of linear stability from below (figure 5). Since
the neutral Reynolds numbers do not differ much, the basic flow is nearly identical
for both instabilities. The critical modes, however, are quite different. The local
energy production I2 for the instability E3 exhibits two equal maxima (figure 11),
each maximum being associated with one of the elliptical (to lowest order) vortices
that make the characteristic cat’s-eye pattern of the basic flow. As can be seen from
figures 11 and 12 the critical mode now consists of a double row of cells. From the
features of the critical mode, it is obvious that the instability is again of elliptical
type. As can be seen from figure 13 the vorticity midway between the cell boundaries
now has two local extrema, anti-parallel oriented, and both approximately aligned
with the local axis of principal strain of the basic flow.

The appearance of the wedge-shaped tongue of linear stability between the critical
curves E2 and E3 can be understood in terms of the basic-flow properties for constant
Γ . When the Reynolds number is large, the wall jets emerging from both downstream
corners of the moving walls are strong and they are comparatively thin (Kuhlmann
et al. 1997). In this situation the basic-state streamlines in the centre of the cavity are
elliptical and the flow is unstable to the mode E2 centred in the elliptic vortex. On a
reduction of the Reynolds number the wall jets, and hence the elliptic vortex, become
weaker so that the mode E2 is stabilized. In addition, the basic flow topology changes
for decreasing Re. The closed streamlines in the centre of the cavity transform into a
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Figure 12. Critical velocity field for Γ = 2.17 in the plane y = 0 showing the double row of cells
for the instability branch E3. The parameters are Rec = 299.3 and kc = 2.024.
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Figure 13. Vorticity of the critical mode (arrows) on the E3 branch for Γ = 2.17 in a plane
z = const. through the centres of two neighbouring cells. The grey bars indicate the direction of the
principal axis of strain of the basic flow. The parameters are Rec = 299.3 and kc = 2.024.

hyperbolic stagnation-point flow and two embedded vortices are created in the centre
at x = y = 0. These vortices grow stronger and are displaced towards the moving
walls on a further decrease of Re. As the existence boundary of the strongly merged
vortex flow is approached from above, the basic flow changes rapidly. In particular,
the strengthening of the two embedded vortices is sufficient to enable the linear
instability E3 to develop for decreasing Re in a small range of Reynolds numbers just
before the basic flow breaks down.

For small aspect ratios, Γ ↓ (≈ 1), the strain in the centre of the cavity diminishes,
because the streamlines become more circular. In fact, the flow in the centre of a
cavity with Γ = 1 would be approximately in solid body rotation if the Reynolds
number were large enough (Batchelor 1956). Hence, the elliptic instability process is
suppressed, giving rise to a strong increase of the neutral E2 curve visible in figure 4.
In this situation, however, a different instability mechanism takes over and leads to
the instability Q (see § 3.5).

3.2. Elliptic instability for Γ < 0.775 (E1)

As the aspect ratio tends to zero the basic flow in the centre of the cavity far away
from the rigid stationary walls at y = ±1/2 approaches plane Couette flow. This
flow is linearly stable (see e.g. Drazin & Reid 1981). Any linear instability, therefore,
must be due to the return flow near the rigid walls. In fact, the return flow is linearly
unstable.
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Figure 14. Basic-state streamlines for Γ = 0.20 and Rec = 577.8, critical mode (arrows), and local
production rate I3 (colour) in a plane z = const. in which I3 takes its absolute maximum.

z

y

61.8

0

Figure 15. Neutral velocity field (arrows) over one wavelength shown at x = 0 for Γ = 0.20 and
Rec = 577.8. The production term I3 is indicated in colour.

As an example we consider Γ = 0.20. The energy budget of the critical mode
(table 2) indicates that nearly all energy is supplied by the basic flow through the
term I3. This term is equivalent to I ′2 in the bulk of the cavity. The spatial distribution
of I3, given in figure 14, shows that the production of energy is strongly localized
midway between the two moving walls and near the end regions where the basic-state
streamlines are sharply curved. In the bulk, practically no energy is transferred from
the basic to the perturbation flow, as expected. This is because the production terms
I1, I2 and I4 become zero in plane shear flow, and because both the u- and the
v-components of the disturbance flow are required to extract energy from the basic
flow via I3. The cross-stream component u, however, decays rapidly away from the
endwalls at y = ±1/2, whereas the fluctuation v is amplified by the underlying basic
shear with a gradient ∂v0/∂x = 2Rec/Γ = 1156/0.20 = 5780. Therefore, u can be
expected to be three to four orders of magnitude smaller than v in the bulk, even if
both velocity components are of the same order of magnitude in the turning zones.
Hence, the neutral mode in the bulk consists of streaks of streamwise perturbation
velocity v. The streaks arise in pairs and are seen in the velocity field of the neutral
mode shown in figure 15 for x = 0. Since the cross-stream velocity component u
is small even in the turning zones, the streaks turn near y = ±1/2 via a non-zero
velocity component w. The streaks are only slightly asymmetric with respect to x = 0.
A cross-section through a pair of streaks (one wavelength of the critical mode) in
the plane y = 0 is shown in figure 16. Only in this plane are the isolines of v exactly
symmetric with respect to x = 0.
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Figure 16. Isolines of the critical velocity component v in the plane y = 0 for Γ = 0.20 and
Rec = 577.8.
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Figure 17. Critical vorticity field (arrows) and principal strain direction (grey lines) in a plane
z = const. midway between two streaks for Γ = 0.20 and Rec = 577.8.

Since the basic flows for Γ = 1.5 (E2) and for Γ = 1.5−1 (E1) are similar and
characterized by elliptical streamlines in the centre (the major difference is due to
the exchange of the minor and major semi-axes) it is reasonable to expect a similar
instability mechanism in both cases. As in § 3.1, one can argue that the branch E1
is an elliptic instability. In particular, the region of maximum energy transfer is
located in the centre of the elliptical vortex if the aspect ratio is not too small.
When Γ decreases the elliptical streamlines are stretched out and become nearly
parallel in the central part of the cavity. Moreover, the central energy production
peak splits into two well-separated peaks (figures 14 and 15). The neutral mode,
however, extends over the whole cavity (figure 15) owing to the streak-producing
shear flow. On a further decrease of Γ one might expect the neutral mode to separate
into two nearly independent perturbation flows located near each of the endwalls.
This mode separation could not be investigated here, because the streaks reach far
into the bulk. It is worth noting that even for small Γ the instability is of elliptic type.
This conclusion is supported by figure 17, showing the alignment of the perturbation
vorticity with the principle stain axis in the regions of maximum energy transfer. This
behaviour underlines the importance of vortex stretching in the instability process
(Waleffe 1990).

The question arises of whether the critical Reynolds number remains finite as
Γ → 0. In this limit the Reynolds number defined in (2.4) would tend to infinity
for any arbitrary small velocity V . Moreover, since the separation d of the moving
walls is the only available length scale, it is appropriate to use the Reynolds number
and wavenumber for plane shear flows, Re∗ = ReΓ and k∗c = kcΓ , respectively, when
h� d. In figure 18 we have plotted the critical Reynolds number Re∗c and the critical
wavenumber k∗c as functions of Γ . Since the number of grid points required for small
Γ increases, and because the minimum of Ren(k) becomes very shallow, we have
terminated our calculations at Γ = 0.10. From the present result it is anticipated that
the critical Reynolds number will remain finite with a value Re∗c(Γ → 0) ≈ 160 and
k∗c (Γ → 0) ≈ 1.5.
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Figure 18. Critical Reynolds number Re∗c (full line) and critical wavenumber k∗c (dotted line)
for small values of Γ .

3.3. Comparison of the elliptic instability in bounded and unbounded domains

The elliptic instability for unbounded linear viscous flows has been treated by Land-
man & Saffman (1987) and Haj-Hariri & Homsy (1997). For a qualitative comparison
with Landman & Saffman (1987) we consider the streamline eccentricity

β =
ε

γ
, (3.1)

where ε is the rate of strain and γ = ω0/2 the rotation rate given by half the vorticity.
The streamline eccentricity β in the centre of the cavity is shown in figure 19 as a
function of the aspect ratio Γ for the neutral Reynolds number Ren(Γ ) along the two
branches of the elliptic instability E1 and E2 which are connected with each other
near Γ ≈ 1 (not visible on the scale of figure 4). The eccentricity of the streamlines
has a minimum at Γ ≈ 0.93 (Ren ≈ 2436). For this aspect ratio the neutral curve
connecting E1 and E2 has a sharp maximum and instead of the elliptic-instability
mode a different mode (Q) is critical.

In order to compare the present elliptic instability in a finite, wall-bounded domain
with the result for unbounded viscous elliptic flow we follow Landman & Saffman
(1987) and consider the range of flow instability in the (β, Eγ)-plane, where

Eγ =
2π

cos2 θ

k2
0

γ
(3.2)

is the Ekman number based on the vorticity. For the unbounded system k0 = |k0| is
the absolute value of the critical wave vector and θ the angle between k0 and the
basic vorticity (z-axis). A comparison of the lid-driven-cavity flow with the unbounded
elliptical flow is made difficult by the fact that the angle θ cannot unambiguously be
determined here. For a qualitative comparison, therefore, we set k0 = kc and θ = 0.
Figure 20 shows that the Ekman number for the neutrally stable cavity flow evaluated
in this manner is smaller than the corresponding one for the critical unbounded elliptic
flow. Hence, the unbounded flow is more unstable for β . 1 than the cavity flow
with the same streamline eccentricity in the centre. Only for β & 1 and Γ > 0.93 is
the cavity flow more unstable than the unbounded flow, which is linearly stable for



Linear stability of rectangular cavity flows 171

1.5

1.0

0.5

0 0.5 1.5 2.0

b

C
1.0

Figure 19. Streamline eccentricity parameter β evaluated in the centre of the cavity (x = y = 0)
and along the neutral curve connecting the branches E1 and E2 (figure 4) as function of the aspect
ratio Γ .

β = 1 (plane Couette flow). This is due to the local production of energy which is no
longer centred in the cavity when the aspect ratio becomes extreme (Γ → (0,∞)). To
better take into account the effect of θ we evaluated θ from the critical mode of the
unbounded elliptical flow (figure 3 of Landman & Saffman 1987) and used this value
to calculate the Ekman number (3.2) for the neutrally stable cavity flow. The aspect
ratios were selected to fit the values of β for which θ was provided by Landman &
Saffman (1987). This significantly improves the result (see figure 20) and both curves
are now similar with a maximum near β ≈ 0.5. Yet, the critical Ekman number for
the lid-driven cavity is smaller by approximately a factor of two compared to the
critical Ekman number for unbounded elliptical flow, i.e. the cavity flow is more stable
than the unbounded flow. The qualitative agreement of the linear stability boundaries
of the bounded and unbounded flow is another indication of the elliptic instability
mechanism in the lid-driven cavity along the branches E1 and E2. We conclude that
the boundary effects, which are responsible for driving as well as for dissipation of
the flows in the cavity, act to stabilize the flow near the centre of the cavity where the
streamlines are approximately elliptical in a range of Γ .

3.4. Centrifugal instability for Γ > 1.951 (C)

When the aspect ratio is larger than Γ = 1.951 the basic two-vortex flow becomes
unstable along the critical curve denoted C in figure 4. The instability C of the
two-vortex state has a long wavelength. A typical critical mode in the (x, z)-plane is
shown in figure 21 for y = 0.25. As can be seen from figure 22(a) the mode appears in
the form of two counter-rotating vortices primarily aligned in the z-direction, slightly
offset from the basic co-rotating vortices and towards the centre of the cavity. The
finite but small-amplitude flow would thus appear as two vortices whose diameters in
the x-direction alternatingly shrink and expand along the axes of the basic vortices.
These results are in agreement with those of Kuhlmann et al. (1997).

To understand the physical instability mechanism of the instability C the major
energy-transfer rates for Γ = 2.5 are given in table 2. While three terms are sig-
nificant in the Cartesian coordinate system (2.10), one net stabilizing and two net
destabilizing ones, only the single term I ′2 is significant and destabilizing when using
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Figure 20. Ekman number Eγ as function of the streamline-eccentricity parameter β evaluated in
the centre of the cavity for the neutrally stable basic flow. Solid and dotted lines denote results for
Γ > 0.93 (E2) and Γ < 0.93 (E1), respectively. The symbols × and + indicate Ekman numbers for
the neutrally stable flow at selected aspect ratios with Γ > 0.93 (E2) and Γ < 0.93 (E1), respectively,
when the angle θ between the wave vector and the z-axis is taken into account as given in Landman
& Saffman (1987). The dashed line is the Ekman number below which the unbounded elliptical
flow is linearly unstable according to Landman & Saffman (1987).
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Figure 21. Critical velocity field for the instability C projected onto the plane y = 0.25
for Γ = 2.5 and Rec = 334.3.

the longitudinal/transversal decomposition of the energy-transfer rates (2.11). The
total local production rate

∑
i I
′
i (I ′2 dominates) is shown in figure 22(a).

Due to inertia, the fluid emerging from the downstream corners of the moving walls
could be expected to flow nearly parallel to the rigid walls into the cavity (compare
also Pan & Acrivos 1967). In fact, this happens for the strongly merged vortex flow
(Kuhlmann et al. 1997; Albensoeder et al. 2001a). However, in the present two-vortex
flow, continuity and the suction by the corner upstream of each moving wall force
the fluid into two nearly circular vortices. Owing to the stationary rigid walls the
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Figure 22. (a) Basic state (streamlines), critical velocity fields (arrows), and the total local production∑
i Ii (colour) for Γ = 2.5 and Rec = 334.3. Shown is a cut at constant z where the local production

takes its absolute maximum. (b) Basic-state streamlines for the same parameters as (a) together
with regions for which |u0|ω0/R < 0 (grey-shaded).

velocity gradient perpendicular to the convex streamlines and radially outward from
the centre of the vortex is negative near the outermost streamlines and near the
region where the flow separates from the rigid walls. This is evident from the density
of the streamlines in the regions of maximum production (red in figure 22a). These
local flow conditions are favourable for a centrifugal instability. While no rigorous
criterion exists for a centrifugal instability in general viscous two-dimensional flows,
Bayly (1988) proved that a two-dimensional inviscid flow is centrifugally unstable if
the streamlines are closed convex curves in some region of the flow and the magnitude
of the circulation decreases outward. An equivalent form of this criterion has recently
been given by Sipp & Jacquin (2000). Accordingly, the inviscid flow is centrifugally
unstable if

|u0|ω0

R
< 0 (3.3)

on a whole streamline ψ0, where R is the local radius of curvature of the streamline
and ω0 the basic-state vorticity. We have evaluated (3.3) for the neutrally stable
viscous flow in a cavity with Γ = 2.5. The result is shown in figure 22(b). Owing
to the signs of the streamline curvature and the vorticity, (3.3) cannot hold near
the moving walls. However, the criterion is satisfied in extended regions originating
near the downstream corners of the moving walls and stretched along the outer
streamlines of both vortices. We find that the total local energy transfer

∑
I ′i (I ′2

dominates) is peaked and stretched parallel to the streamlines in just the region where
(3.3) is satisfied (compare figure 22(a)). From these arguments we conclude that the
instability is of centrifugal type. Only in the region of curved streamlines approaching
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Figure 23. Critical Reynolds number (solid line) and wavenumber (dotted line) for large aspect
ratios Γ . The approximate asymptotic value Rec(Γ → ∞) ≈ 420 (Albensoeder et al. 2001b) is
indicated as a dashed line.

the upstream corners of the moving walls is the production term I ′2 negative, because
the velocity field of the critical mode has a component parallel (anti-parallel) to the
basic flow and in the direction of increasing (decreasing) basic-state momentum (see
figure 2 of Albensoeder et al. 2001b).

When Γ is large, each moving wall drives its own primary vortex and a sequence of
weak secondary Moffatt eddies (Moffatt 1964). Because the latter decay exponentially
towards the interior, both main vortices become independent for Γ → ∞. The
extrapolated asymptotic critical Reynolds number and the critical wavenumber for
Γ → ∞ are found to coincide with the corresponding values for the single-lid-driven
cavity (Albensoeder et al. 2001b). The asymptotic behaviour of the critical Reynolds
number and wavenumber is shown in figure 23.

3.5. Quadripolar instability for 0.775 < Γ < 1.036 (Q)

In the near-unity aspect-ratio range 0.775 < Γ < 1.036 where the elliptic instability
process is suppressed, because the dipolar strain field is very weak in the centre of the
vortex (minimum of β in figure 19), another neutral mode becomes critical. Its critical
wavelength λc = 2π/kc is much shorter than all other length scales. The basic-state
stream function, the total local energy transfer, and the structure of the critical mode
are shown in figure 24. As can be seen, there is practically no energy supply from
the basic state in the vortex core. All energy production takes place near the outer
streamlines, in particular near both corners downstream of the moving walls.

One might expect that the present instability is similar to the one in the classi-
cal one-sided lid-driven square cavity. In fact, the critical Reynolds and the critical
wavenumbers are of comparable magnitude in both cases and both instabilities are
stationary (Albensoeder et al. 2001b). Moreover, the locations of sizable energy trans-
fer from the basic states are similar. The neutral modes, however, differ completely.
While the critical mode in the classical cavity consists of localized Taylor–Görtler-like
vortices, the critical flow in the present case does not consist of toroidal vortices
whose vorticity is aligned with the basic-flow direction. In contrast, we find a critical
mode consisting of four eddies within half a wavelength in z-direction. These eddies
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are located in the four corners of the cavity and they have a vorticity which is very
well aligned with the direction of the strain (cf. figure 27 below), approximately in the
direction of the bisection of the respective corner. The fluid motion can be inferred
from figure 24 and figure 25 which show the critical mode in a spanwise plane at
y = 0. Consider, for instance, the two streams at the bottom of figure 25, showing
the midplane y = 0, which approach each other from the left- and the right-hand
side (x = ±Γ/2). The streams meet approximately in the centre of the cavity and
split into two streams which leave the plane y = 0 in the positive and negative
y-direction. These streams in the y-direction and near x = 0 approach the rigid walls
at y = ±1/2 where they turn and flow back towards the centre of the cavity. This
backflow is visible in figure 24 as the two streams coming from the top and from the
bottom. Figure 24 shows that both colliding streams are approximately symmetrically
deflected into two streams near y = 0 which are directed in the positive and negative
x-direction towards the moving walls. These jets are also visible at mid-height in
figure 25. In the vicinity of the moving walls the jets split and return towards the
centre (top and bottom of figure 25). This closes the flow loop. The associated fluid
motion is distinctly different from the Taylor–Görtler vortices (Albensoeder et al.
2001b).

3.6. Comparison with the quadripolar instability of a strained Rankine vortex

While the instability Q of the cavity flow does not appear to be related to the
Taylor–Görtler instability, it exhibits all the features of the instability of a vortex in
a quadripolar strain field. When a vortex of finite diameter is subject to an externally
imposed quadripolar strain field the streamlines in the centre of the vortex are circular.
Towards the periphery of the vortex, where the strain dominates, the streamlines are
more distorted and approach a square shape in the case of a Rankine vortex. Eloy
& Le Dizés (2001) investigated the instability of a Rankine vortex in a multipolar
strain field, including the asymptotic influence of viscosity. For a quadripolar strain
field they found the following features.

(a) When the Reynolds number is not too large the most unstable mode is station-
ary.

(b) The instability is due to a resonance of two Kelvin modes (Saffman 1992) with
fundamental azimuthal wavenumbers m = ±2. Therefore, the perturbation mode is
double periodic along a streamline.

(c) The instability arises in the limit of large axial wavenumbers k. Since high-
wavenumber modes suffer high viscous damping, the critical Reynolds number will
be larger than for comparable elliptic-flow instabilities.

(d) The mechanism of instability is dominated by the stretching of perturbation
vorticity by the basic flow such that the perturbation vorticity becomes aligned in
the stretching direction. The perturbations are localized in the region of maximum
stretching rate which occurs near the edge of the vortex core where the streamline
curvature is large.

The basic cavity flow exhibits similar streamlines to the Rankine vortex in quadripo-
lar strain, except for details near the downstream corners of the moving walls. To
compare the present closed flow with the instability of an unbounded, weakly strained
Rankine vortex we write the critical conditions found by Eloy & Le Dizès (2001)
(their figure 10) in the form

Rec ≈ 1

7.5× 10−4

1

ε2
4

and kc ≈ 25√
ε4

, (3.4)
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Figure 24. Basic state streamlines (full lines), neutral mode (arrows), and the total local production∑
i Ii (colour) for Γ = 0.9 and Rec = 642.7. Shown is a plane z = const. (see figure 25) in which the
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Figure 25. Critical mode for Γ = 0.9 and Rec = 642.7 in the plane y = 0.

where ε4 is the strength parameter of the quadripolar strain. The estimate (3.4) is
obtained by identifying the scales h = a and V = aΩ, with a being the radius of
the Rankine vortex and Ω its rotation rate. To determine the magnitude of the
quadripolar strain the streamlines of the cavity flow are fitted to

ψ(r, θ) = ψ(0, 0) + cRe

[
r2

2
+ ε2

r2

2
sin(2θ + θ2) + ε4

r4

4
sin(4θ + θ4)

]
, (3.5)

using polar coordinates (r, θ) centred at x = y = 0. In this form of the stream function
the dipolar and quadripolar strain-rate parameters ε2 and ε4 are identical to those in
Eloy & Le Dizès (2001). The free parameters are ε2, ε4, the phases θ2 and θ4, and the
‘vortex-strength’ parameter c.

We find that all the fitting parameters are almost constant in the vortex core, at
least for the range of Γ where the instability Q is significant. As an example ε2, ε4

and c are shown in figure 26(a) for Γ = 0.9 and Re = Rec = 642.7. Since (3.5) is the
general asymptotic form of a potential flow without singularities, the result shows that
the vortex core is nearly inviscid. For r > 0.4 viscous wall effects become important.
In figure 26(b) the ratio of the quadripolar to the dipolar strain parameters is plotted
as function of the aspect ratio Γ . It shows that the quadripolar strain is dominant and
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Figure 26. (a) Fitted values of c ( e), ε2 (�) and ε4 (�) as functions of the radius r. The parameters
are Re = Rec = 642.7 and Γ = 0.9. (b) The ratio ε4/ε2 as function of Γ for r = 0.3. The Reynolds
number corresponds to the neutral value of the instability branch Q, Re(Γ ) = Re(Q)

c (Γ ). The dotted
lines denote the limits for the quadripolar instability.

that ε4/ε2 takes a maximum within the region of Γ where the instability Q occurs.
The strain rate parameters at this maximum are ε2 ≈ 0.15 and ε4 ≈ 1.5. Using the
value ε4(Γ = 0.9) ≈ 1.5 we obtain from (3.4) a prediction for the critical values,

Rec ≈ 590 and kc ≈ 20, (3.6)

expected from the analysis of Eloy & Le Dizès (2001). These estimates are in
surprisingly good agreement with the critical values for the cavity flow Rec = 642.7±
1.7 and kc = 14.89± 0.03.

The above consideration shows that the critical Reynolds numbers and wavenum-
bers are comparable for a quadripolarly strained Rankine vortex and the present
cavity flow with Γ = 0.9. Also, the critical Reynolds numbers for the branch Q are
higher than for the elliptic instability (cf. figure 4), similar to the stability properties
of strained Rankine vortices (Eloy & Le Dizès 2001). Altogether, the cavity flow
instability Q satisfies the characteristic features (a–c).

Finally, we consider the total local energy production in the plane z = const. in
which the production takes its maximum value. From figure 24 the local production
has four maxima, not exactly on the bisection, but near the four corners of the cavity
where the outer streamlines have the highest curvature. These are also the regions
of high strain rate of the basic flow. The direction of the basic strain field is shown
in figure 27. A comparison with figure 24 clearly proves the good correlation of the
perturbation vorticity vector and the basic-state strain direction. The vorticity is very
large near the four corners of the cavity, corresponding to the four edges of the outer
basic-state streamlines. This observation qualitatively validates feature (d ).

The foregoing discussion has shown that the present instability Q for nearly unit
aspect ratios exhibits essentially the same properties as the instability of a Rankine
vortex in a quadripolar strain field. We conclude, therefore, that the instability found
here is the first reported manifestation of the quadripolar instability in a bounded
flow.

4. Conclusion
The flow in rectangular cavities driven by opposing wall motion has been inves-

tigated in the limit of infinite span. Using a finite-volume technique and the normal
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Figure 27. Direction of the basic-state strain field (grey lines) and vorticity of the critical mode
(arrows) for Γ = 0.9 and Re = Rec = 642.7.

modes in spanwise direction the linear stability of various two-dimensional flows has
been calculated.

If the separation of the moving walls is sufficiently large compared to the distance
between the stationary rigid walls the basic flow consists of two well-separated vortices,
each driven by one of the moving lids. This type of flow becomes centrifugally unstable
in three dimensions to the same type of stationary perturbations as in the classical one-
sided lid-driven cavity (Albensoeder et al. 2001b). The extrapolated critical Reynolds
numbers and wavenumbers for Γ →∞ are the same.

When the two moving walls are closer the two-dimensional vortices partly merge
and typically form an elliptic vortex (strongly merged vortex flow). This vortex flow
is subject to a strong dipolar strain. The straining motion gives rise to an elliptic
instability which is caused by a resonance between two Kelvin waves with fundamental
azimuthal wavenumber m = ±1.

For aspect ratios near unity, the basic-state vortex is only weakly strained in
its centre, but it is strained in four directions near the four cavity corners. This
quadripolar strain is a result of the cavity geometry and the motion of the two
opposing walls. By comparing the characteristic properties of the basic flow and the
most unstable mode with the instability of a quadripolar-strained Rankine vortex
(Eloy & Le Dizès 2001) we conclude that both instabilities are caused by the same
mechanism, i.e. a resonance between two Kelvin waves of azimuthal wavenumber
m = ±2.

If the separation of the moving walls is significantly smaller than the stationary
wall distance the streamlines of the basic flow are again elliptic and the basic flow
suffers an elliptic instability. For shallow cavities with Γ � 1 the elliptic instability
arises in both symmetric end zones where the basic flow turns. The bulk flow, being
approximately a plane-Couette flow, cannot provide any energy to the perturbations,
but the critical mode penetrates far into the bulk from the end zones in the form of
wide stationary streaks.

This work has been supported by DFG under grant numbers Ku896/5-2 and
Ku896/8-1.
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